TEMPEST-D: Temporal Experiment for Storms and Tropical Systems Demonstration Mission

Presenter & PI: Steven C. Reising, Colorado State University

Team Members:

Wesley Berg, V. Chandrasekar, Christian D. Kummerow, Richard Schulte, Yuriy Goncharenko and C. Radhakrishnan, *Colorado State University*

Shannon T. Brown, Todd C. Gaier, Sharmila Padmanabhan, Boon H. Lim and Cate Heneghan, NASA Caltech/Jet Propulsion Laboratory

Matthew Pallas, Doug Laczkowski, Nancy Gaytan and Austin Bullard, Blue Canyon Technologies

Earth Venture Technology (EVI-2) Thanks to NASA Wallops for ground comms!

Temporal Experiment for Storms and Tropical Systems (TEMPEST)

TEMPEST addresses 2017 National Academies Earth Science Decadal Survey:

- Why do convective storms, heavy precipitation, and clouds occur exactly when and where they
 do? (Most Important Science Question W-4)
- Proposed to NASA EVI-2 in 2013 as a constellation of 5 identical 6U CubeSats to provide temporally-resolved observations of rapidly-evolving storms every 5 minutes for up to 30 minutes.
- Chosen as NASA Earth Venture Technology Demonstration mission and delivered a 6U CubeSat with multi-channel millimeter-wave radiometer for launch less than 2 years after PDR.

- Launched by Orbital ATK from NASA Wallops to ISS on May 21, 2018.
- Deployed into orbit by Nanoracks on July 13, 2018.

5 identical 6U small sats, each with an identical 5-channel radiometer, flying 5 minutes apart

NOAA Advanced Technology Microwave Sounder (ATMS) 75 kg, 100 W, \$\$\$\$

TEMPEST-D 3.8 kg, 6.5 W, \$

TEMPEST-D Team and Heritage Reflect Over a Decade of **Investment in Earth Science Technology Development**

TEMPEST-D Team (L to R): Rudy Bendig, Mary Soria, Sharmila Padmanabhan, Ann Batchelor, Bob Bauer (ESTO), Steven Reising and Cate Heneghan

Microwave Atmospheric Sounder on CubeSat (MASC, JPL R&TD)

Sustained investment by JPL and ESTO led to TEMPEST proposal to NASA EVI-2 in 2013 (CSU/JPL)

NASA ESD created Earth Venture Tech Program in 2014

Also led to HRMR on Sentinel-6 Michael Freilich

TEMPEST-D Instrument Team (L to R): Todd Gaier, Heather Lim, Alan Tanner, Sharmila Padmanabhan, Rudy Bendig and Boon Lim

High-frequency Airborne Microwave and Millimeter-wave Radiometer (HAMMR IIP, NASA ESTO, CSU/JPL)

TEMPEST-D First Full Orbits on Sept. 11, 2018

TEMPEST-D Venture Tech Mission: Observing Global Brightness Temperatures for the Past 3 Years

TEMPEST-D Venture Tech Mission: Producing Global Atmospheric Science Data After Nearly 3 Years on Orbit

- TEMPEST-D multi-channel mm-wave radiometer was in hibernation on orbit for 6 months due to downtime at NASA Wallops for repair of the UHF antenna system.
- These global Earth observations from the TEMPEST-D CubeSat were made only 9 hours after the instrument was turned on.
- TEMPEST-D instrument performance after 6 months of hibernation in space is the same as before.

TEMPEST-D 87 GHz Brightness Temperatures (K) Observed on March 31, 2021

240

260

230

210

190

200

290

280

TEMPEST-D Venture Tech Mission: Producing Global Atmospheric Science Data After Nearly 3 Years on Orbit

TEMPEST-D CubeSat Producing Well-Calibrated Atmospheric Science Data for Nearly 3 Years on Orbit

On-orbit demonstration of new InP HEMT Low Noise Amplifier Technology

Padmanabhan et al., TGRS, 2020.

- TEMPEST-D calibration demonstrated to be equivalent to operational sensors (Berg et al., TGRS, 2020)
- Radiometer accuracy, precision and stability all rock solid after nearly three years on orbit
- Extended mission provides risk reduction for future operational missions

TEMPEST-D CubeSat Mission: Observing Hurricanes, Tropical Cyclones, Oceanic and Continental Storms for Nearly 3 Years

Calibrated TEMPEST-D data are publicly available!

https://tempest.colostate.edu/data

TEMPEST-D data have been downloaded by 41 institutions in 12 countries on 4 continents.

On September 28, 2018, TEMPEST-D and RainCube overflew Typhoon Trami < 5 minutes apart

Oct 15, 2018 at 15:25 UTC Orographic precipitation off Mexican coast

Correlation
coefficient
between
TEMPEST-D
TB and
RainCube
Reflectivity:
> 0.90

Unique Observations Demonstrated by TEMPEST-D

Multi-angle observations

 Multi-angle sounding improves vertical sampling through troposphere, analogous to a "hyperspectral" sounder

 A promising application is improving measurement capability in planetary boundary layer (PBL)

• Also enables uncertainty quantification for time resolved measurement concepts

Unique multi-angle observations accomplished by flying TEMPEST-D yawed by 90°

0.005

TEMPEST-D allows testing these new concepts with satellite data for the first time

Altitude (km)

BL Height

Free troposphere

COWVR instrument

Design of CubeSat Microwave Sounder Constellations using 60 Satellites at 550 km Altitude

Simulated ground tracks of (a) TEMPEST Polar Constellation and (b) TEMPEST Multi-Inclination Constellation (MIC) over a single orbital period (approximately 95 minutes).

Mean Revisit Time of CubeSat Microwave Constellations Compared to Current Operational Sounders

 TEMPEST Polar Constellation: all sun-synchronous

 TEMPEST Multi-Inclination Constellation: 30°, 40°, 50°, 60° and 70°

Desired revisit times to capture temporal variability:

- Temperature and water vapor: order of ~1-2 hours
- Convective storm systems: order of 20-30 minutes

Mean revisit times for polar orbiter constellation (blue), TEMPEST Polar Constellation (green) and TEMPEST Multi-Inclination Constellation (red).

Revisit Time of CubeSat Microwave Constellations Compared to Current Operational Sounders

Revisit times of each constellation for 25, 50 and 90% of total observation time (6, 12 and approximately 21.5 hours per day, respectively).

TEMPEST-D Venture Tech Mission Contributions

- TEMPEST-D, a NASA Earth Venture Tech Demo mission, met all of its Level 1 requirements within the first 90 days of operations.
- Demonstrated rapid development cycle with delivery of CubeSat with multi-frequency millimeter-wave radiometer within 2 years after PDR.
- TEMPEST-D has significantly exceeded requirements for calibration accuracy and precision and has performance comparable to much larger operational satellites.
- TEMPEST-D radiometers are highly stable over the 3-year mission, with no evidence of calibration errors due to on-orbit instrument temperature.
- Demonstrated infusion of NASA ESTO-funded technology developed over more than a decade from TRL 2 (ACT-08) to TEMPEST-D tech demo/science mission at TRL 9.
- Highly-correlated complementary measurements with RainCube enable new science mission concepts for the future.
- TEMPEST spare instrument to be deployed on ISS in Dec. 2021 for 3 years.
- Future constellations have the potential to provide rapid revisit time to observe variability of temperature and water vapor as well as rapidly-evolving storms.